Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Adsorption in heterogeneous porous media: Hierarchical and composite solids

TitleAdsorption in heterogeneous porous media: Hierarchical and composite solids
Publication TypeJournal Article
Year of Publication2016
AuthorsDeliere L, Villemot F, Farrusseng D, Galarneau A, Topin S, Coasne BA
JournalMicroporous and Mesoporous Materials
Volume229
Pagination145 - 154
Date PublishedJul-15-2016
ISSN13871811
Abstract

Experiment and molecular simulation are used to investigate adsorption in heterogeneous porous media consisting of hierarchical solids (combining different porosity scales) or composite solids (such as silver nanoparticles adsorbed at the external surface of zeolite). It is shown that adsorption in such heterogeneous materials can be written as a linear combination of the adsorption isotherms in its different domains (i.e. porosity scales for the hierarchical sample and constituents for the composite sample). In the case of the composite material, we also show that the linear combination can be used with weighing parameters obtained for a different adsorbate. Such a superimposition principle, which is validated using well-characterized experimental samples, is of interest for characterization purpose as well as industrial applications as they can be used to determine accurately the amount of phases in a given sample (volume corresponding to a given porosity scale or constituent). In contrast, significant departure between the experimental adsorption isotherm and the linear combination can be used to detect coupling effects between the different domains or restrained access to a given domain type. Such a characterization strategy of complex heterogeneous media is complementary to other experiments, such as those probing capillary hysteresis shapes, scanning curves and subloops, which allow determining the distribution of domains within the framework of the independent domain theory. (C) 2016 Elsevier Inc. All rights reserved.

URLhttps://linkinghub.elsevier.com/retrieve/pii/S1387181116301032
DOI10.1016/j.micromeso.2016.04.011
Short TitleMicroporous and Mesoporous Materials
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU