Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

AIP Conference Proceedings A multiscale description of failure in granular materials

TitleAIP Conference Proceedings A multiscale description of failure in granular materials
Publication TypeConference Proceedings
Year of Publication2013
AuthorsHadda N, Nicot F, Sibille L, Radjaï F, Tordesillas A, Darve F
EditorYu A, Dong K, Yang R
SponsorAssoc Study Micromechan Granular Media(AEMMG), Univ New S Wales(UNSW) Lab Simulat & Modelling Particulate Syst(SIMPAS), Curtin Univ(CU) Dept Chemical Engn, Univ Twente(UT) Multi Scale Mech Grp(CTW & MESA+), JMBC Res Sch Fluid Mechan, Elsevier, Univ New S Wales(UNSW) Sch Mat Sci & Engn
Conference Name7th International Conference on Micromechanics of Granular Media (Powders and Grains)
VolumeBook Series: AIP Conference Proceedings POWDERS AND GRAINS 2013
Number of Volumes1542
Pagination585-588
Date PublishedJun-18-2013
PublisherAIP
Conference LocationJUL 08-12 2013 Sydney, AUSTRALIA
Abstract

This paper presents conditions of initiation and development of failure in granular materials through a twodimensional discrete element model. General condition for the effective development of failure and its physical characteristics are recalled. Then relation between failure and the second order work expressed in terms of microscopic variables is discussed. Eventually, correspondence between a localized mode of failure marked with shear band patterns and space distribution of negative values of microscopic second-order work is investigated.

DOI10.1063/1.4811999
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU