Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Atomic-scale modelling of elastic and failure properties of clays

TitleAtomic-scale modelling of elastic and failure properties of clays
Publication TypeJournal Article
Year of Publication2014
AuthorsHantal G, Brochard L, Laubie H, Ebrahimi D, Pellenq RJean-Marc, Ulm F-J, Coasne BA
JournalMolecular Physics
Volume112
Issue9-10
Pagination1294-1305
Date PublishedMay-19-2014
Type of ArticleArticle
ISSN0026-8976
Keywordsclay, elastic properties, fracture, reactive molecular simulation
Abstract

The elastic and failure properties of a typical clay, illite, are investigated using molecular simulation. We employ a reactive (ReaxFF) and a non-reactive (ClayFF) force field to assess the elastic properties of the clay. As far as failure is concerned, ReaxFF was used throughout the study; however, some calculations were also performed with ClayFF. A crack parallel to the clay layers is found to have low fracture resistance when submitted to a tensile loading perpendicular to the crack. The mechanism of both yield and fracture failures is decohesion in the interlayer space. In contrast, under shear loading, the nanoscale failure mechanism is a stick-slip between clay layers. No fracture propagation is observed as the clay layers slide on top of each other. The low fracture resistance in mode I and the stick-slip failure in mode II are both the consequence of the lack of chemical bonds between clay layers where the cohesion is provided by non-covalent interactions. This work, which provides a description of the failure of clays at the microscopic scale, is the first step towards describing the failure of clays at a larger scale where the polycrystalline distribution of clay grains must be taken into account.

DOI10.1080/00268976.2014.897393
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU