Wheat flours are essential ingredients of daily food products like bread, cookies or pastries. Their quality depends on the milling process and mechanical strength of wheat grains. Although it is well known that the strength and rupture of grains are strongly controlled by the endosperm microstructure, the respective roles of the starch and polymer volume fractions and their adhesion are not yet fully understood. This typical biological microstructure can be modeled as a cemented granular material, where the two size populations of starch granules (large:A-type, small:B-type) are the particles, and the protein matrix, which partially fills the space between granules, plays the role of a cement. This structural model of wheat endosperm is used, together with mechanical characteristics of starch and proteins obtained by means of Atomic Force Microscopy (AFM) measurements, to simulate the mechanical behavior and breakage of wheat endosperm in milling process. We find that the porosity outweighs the effect of other parameters for the elastic modulus, which declines as a nearly linear function of porosity. We also show that the tensile strength is an increasing function of the amount and connectivity of starch granules with increasing concentration of stresses along chains of granules. This effect is more significant at low porosity where stress distribution is mainly controlled by the contact network between starch granules. This effect explains why the protein content is not fully correlated to vitreousness, and samples of similar protein content can be different in vitreosity. Finally, we find that the starch-granule adhesion strongly affects the tensile strength whereas the effect of starch volume fraction appears mainly at high interface adhesion, which is the case of hard type wheat grains.

}, issn = {02608774}, doi = {10.1016/j.jfoodeng.2016.06.009}, author = {Chichti, Emna and Val{\'e}rie Lullien-Pellerina and George, Matthieu and Farhang Radja{\"\i} and Rafik Aff{\`e}s and Jean-Yves Delenne} } @article {295, title = {Tensile strength and fracture of cemented granular aggregates}, journal = {The European Physical Journal E}, volume = {35}, year = {2012}, month = {Nov-2012}, pages = { Article Number: 117}, abstract = {Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

}, issn = {1292-8941}, doi = {10.1140/epje/i2012-12117-7}, author = {Rafik Aff{\`e}s and Jean-Yves Delenne and Yann Monerie and Farhang Radja{\"\i} and Vincent Topin} } @proceedings {352, title = {Modeling Porous Granular Aggregates}, journal = {9th International Workshop on Buifurcation and Degradation in Geomaterials (IWBDG 2011)}, volume = {Springer Series in Geomechanics and Geoengineering - ADVANCES IN BIFURCATION AND DEGRADATION IN GEOMATERIALS}, year = {2011}, month = {May-28-2011}, pages = {249 - 254}, publisher = {Springer Netherlands}, address = {MAY 23-26 2011 Porquerolles, FRANCE}, abstract = {We rely on 3D simulations based on the Lattice Element Method (LEM) to analyze the failure of porous granular aggregates under tensile loading. We investigate crack growth by considering the number of broken bonds in the particle phase as a function of the matrix volume fraction and particle-matrix adhesion. Three regimes are evidenced, corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We also show that the probability density of strong stresses falls off exponentially at high particle volume fractions where a percolating network of jammed particles occurs. Decreasing the matrix volume fraction leads to increasingly broader stress distribution and hence a higher stress concentration. Our findings are in agreement with 2D results previously reported in the literature.

}, isbn = {978-94-007-1420-5}, issn = {1866-8755}, doi = {10.1007/978-94-007-1421-2_32}, author = {Rafik Aff{\`e}s and Vincent Topin and Jean-Yves Delenne and Yann Monerie}, editor = {St{\'e}phane Bonelli and Dascalu, Cristian and Fran{\c c}ois Nicot} }