Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Combinatorial molecular optimization of cement hydrates

TitleCombinatorial molecular optimization of cement hydrates
Publication TypeJournal Article
Year of Publication2014
AuthorsQomi M J A, Krakowiak KJ, Bauchy M, Stewart K.L., Shahsavari R, Jagannathan D., Brommer D.B., Baronnet A, Buehler MJ, Yip S, Ulm F-J, Van Vliet KJ, Pellenq RJean-Marc
JournalNat Commun
Volume5
PaginationArticle Number: 4960
Date PublishedSep-24-2014
Abstract

Despite its ubiquitous presence in the built environment, concreteâ€$(1s (Bmolecular-level properties are only recently being explored using experimental and simulation studies. Increasing societal concerns about concreteâ€$(1s (Benvironmental footprint have provided strong motivation to develop new concrete with greater specific stiffness or strength (for structures with less material). Herein, a combinatorial approach is described to optimize properties of cement hydrates. The method entails screening a computationally generated database of atomic structures of calcium-silicate-hydrate, the binding phase of concrete, against a set of three defect attributes: calcium-to-silicon ratio as compositional index and two correlation distances describing medium-range silicon-oxygen and calcium-oxygen environments. Although structural and mechanical properties correlate well with calcium-to-silicon ratio, the cross-correlation between all three defect attributes reveals an indentation modulus-to-hardness ratio extremum, analogous to identifying optimum network connectivity in glass rheology. We also comment on implications of the present findings for a novel route to optimize the nanoscale mechanical properties of cement hydrate.

Figure 1

DOI10.1038/ncomms5960
Full Text
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU