Title | Combinatorial molecular optimization of cement hydrates |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Qomi M J A, Krakowiak KJ, Bauchy M, Stewart K.L., Shahsavari R, Jagannathan D., Brommer D.B., Baronnet A, Buehler MJ, Yip S, Ulm F-J, Van Vliet KJ, Pellenq RJean-Marc |
Journal | Nat Commun |
Volume | 5 |
Pagination | Article Number: 4960 |
Date Published | Sep-24-2014 |
Abstract | Despite its ubiquitous presence in the built environment, concreteâ€$(1s (Bmolecular-level properties are only recently being explored using experimental and simulation studies. Increasing societal concerns about concreteâ€$(1s (Benvironmental footprint have provided strong motivation to develop new concrete with greater specific stiffness or strength (for structures with less material). Herein, a combinatorial approach is described to optimize properties of cement hydrates. The method entails screening a computationally generated database of atomic structures of calcium-silicate-hydrate, the binding phase of concrete, against a set of three defect attributes: calcium-to-silicon ratio as compositional index and two correlation distances describing medium-range silicon-oxygen and calcium-oxygen environments. Although structural and mechanical properties correlate well with calcium-to-silicon ratio, the cross-correlation between all three defect attributes reveals an indentation modulus-to-hardness ratio extremum, analogous to identifying optimum network connectivity in glass rheology. We also comment on implications of the present findings for a novel route to optimize the nanoscale mechanical properties of cement hydrate. |
DOI | 10.1038/ncomms5960 |
Full Text |