Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Comparison of the effects of rolling resistance and angularity in sheared granular media

TitleComparison of the effects of rolling resistance and angularity in sheared granular media
Publication TypeConference Proceedings
Year of Publication2013
AuthorsEstrada N, Azéma E, Radjaï F, Taboada A
EditorYu A, Dong K, Yang R
SponsorAssoc Study Micromechan Granular Media(AEMMG), Univ New S Wales(UNSW) Lab Simulat & Modelling Particulate Syst(SIMPAS), Curtin Univ(CU) Dept Chemical Engn, Univ Twente(UT) Multi Scale Mech Grp(CTW & MESA+), JMBC Res Sch Fluid Mechan, Elsevier, Univ New S Wales(UNSW) Sch Mat Sci & Engn
Conference Name7th International Conference on Micromechanics of Granular Media (Powders and Grains)
VolumeBook Series: AIP Conference Proceedings POWDERS AND GRAINS 2013
Number of Volumes1542
Pagination891-894
Date PublishedJul-2013
Conference LocationJUL 08-12 2013 Sydney, AUSTRALIA
Keywordsangularity, anisotropy, force distribution, Granular material, rolling resistance, Shear strength, solid fraction
Abstract

In this paper, we compare the effect of rolling resistance at the contacts in granular systems composed of disks with the effect of angularity in granular systems composed of regular polygonal particles. For this purpose, we use contact dynamics simulations. By means of a simple shear numerical device, we investigate the mechanical behavior of these materials in the steady state in terms of shear strength, solid fraction, force and fabric anisotropies, and probability distribution of contact forces. We find that, based on the energy dissipation associated with relative rotation between two particles in contact, the effect of rolling resistance can explicitly be identified with that of the number of sides in a regular polygonal particle. This finding supports the use of rolling resistance as a shape parameter accounting for particle angularity and shows unambiguously that one of the main influencing factors behind the mechanical behavior of granular systems composed of noncircular particles is the partial hindrance of rotations as a result of angular particle shape.

URLhttps://hal.archives-ouvertes.fr/hal-00842799
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU