Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Earth concrete. Stabilization revisited

TitleEarth concrete. Stabilization revisited
Publication TypeJournal Article
Year of Publication2018
AuthorsVan Damme H, Houben H
JournalCement and Concrete Research
Volume114
Pagination90 - 102
Date PublishedDec-2018
ISSN00088846
Abstract

Not surprisingly, with the increased awareness of environmental issues, construction with raw (crude, unbaked) earth (subsoil) is gaining renewed interest. However, it suffers from a poor image and from the difficulty to meet modern productivity standards and to pass some durability tests designed for industrial materials. The recent trend is to overcome these drawbacks by “stabilizing” the material most often with Portland cement (PC). Here we show that stabilization with PC is in general neither technically nor environmentally advisable. It brings only moderate mechanical improvement at a high environmental cost. Rather than massively transforming crude earth into a low quality concrete, it would be more appropriate to adapt the architectural practice and/or to look for milder ways to improve properties. In this respect, the recent successful attempts to improve the workability and the strength of raw earth by controlling the dispersion of its fine fraction seem to be particularly promising.

URLhttps://linkinghub.elsevier.com/retrieve/pii/S0008884616308365
DOI10.1016/j.cemconres.2017.02.035
Short TitleCement and Concrete Research
Full Text

Earth concrete

  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU