Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Free Volume Theory of Hydrocarbon Mixture Transport in Nanoporous Materials

TitleFree Volume Theory of Hydrocarbon Mixture Transport in Nanoporous Materials
Publication TypeJournal Article
Year of Publication2016
AuthorsObliger A, Pellenq RJean-Marc, Ulm F-J, Coasne BA
JournalThe Journal of Physical Chemistry Letters
Volume7
Issue19
Pagination3712 - 3717
Date PublishedJun-10-2016
ISSN1948-7185
Abstract
Despite recent focus on shale gas, hydrocarbon recovery from the ultraconfining and disordered porosity of organic matter in shales (kerogen) remains poorly understood. Key aspects such as the breakdown of hydrodynamics at the nanoscale and strong adsorption effects lead to unexplained non-Darcy behaviors. Here, molecular dynamics and statistical mechanics are used to elucidate hydrocarbon mixture transport through a realistic molecular model of kerogen [Bousige, C.; et al. Nat. Mater. 2016, 15, 576]. Owing to strong adsorption effects, velocity cross-correlations between the mixture components and between molecules of the same species are shown to be negligible. This allows estimation of each component permeance from its self-diffusivity, which can be obtained from single-component data. These permeances are found to scale with the reciprocal of the alkane length and decrease with the number of adsorbed molecules following a simple free volume theory, therefore allowing mixture transport prediction as a function of the amount of trapped fluid.
 
 
Abstract Image
DOI10.1021/acs.jpclett.6b01684
Short TitleJ. Phys. Chem. Lett.
Full Text
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU