Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Lattice Boltzmann modelling of liquid distribution in unsaturated granular media

TitleLattice Boltzmann modelling of liquid distribution in unsaturated granular media
Publication TypeJournal Article
Year of Publication2016
AuthorsRichefeu V, Radjaï F, Delenne J-Y
JournalComputers and Geotechnics
Volume80
IssueSI
Pagination353 - 359
Date PublishedDec-2016
ISSN0266352X
Abstract

We use capillary condensation simulated by a multiphase Lattice Boltzmann model as a means to generate homogeneous distributions of liquid clusters in 2D granular media. Liquid droplets condense from the vapour phase between and on the grains, and they transform into capillary bonds and liquid clusters as thermodynamic equilibrium is approached. As the amount of condensed liquid is increased, liquid clusters of increasing connectivity are formed and the distribution of liquid undergoes topological transitions until the whole pore space is filled by the liquid. We investigate the cluster statistics and local grain environments. From extensive simulations, we also obtain the mean Laplace pressure as a function of the amount of liquid, which is found to be quite similar to the well-known experimental retention curve in soil mechanics. The tensile stress carried by the grains increases as a function of the amount of condensed liquid up to a peak in the funicular state beyond which the stress falls off as a result of pressure drop inside the merging clusters.

DOI10.1016/j.compgeo.2016.02.017
Short TitleComputers and Geotechnics
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU