Title | Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | Weck PF, Kim E, Wang Y, Kruichak JN, Mills MM, Matteo EN, Pellenq RJean-Marc |
Journal | Scientific Reports |
Volume | 7 |
Issue | 1 |
Pagination | Article Number: 7068 |
Date Published | Aug-01-2017 |
Abstract | Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution. |
DOI | 10.1038/s41598-017-07310-9 |
Short Title | Sci Rep |