Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Modified Szegö–Widom Asymptotics for Block Toeplitz Matrices with Zero Modes

TitleModified Szegö–Widom Asymptotics for Block Toeplitz Matrices with Zero Modes
Publication TypeJournal Article
Year of Publication2019
AuthorsBasor E., Dubail J, Emig T, Santachiara R
JournalJournal of Statistical Physics
Volume174
Pagination28 - 39
Date PublishedJan-2019
ISSN0022-4715
Abstract

The Szego-Widom theorem provides an expression for the determinant of block Toeplitz matrices in the asymptotic limit of large matrix dimension n. We show that the presence of zero modes, i.e, eigenvalues that vanish as n, ||<1, when n, requires a modification of the Szego-Widom theorem. A new asymptotic expression for the determinant of a certain class of block Toeplitz matrices with one pair of zero modes is derived. The result is inspired by one-dimensional topological superconductors, and the relation with the latter systems is discussed.

URLhttp://link.springer.com/10.1007/s10955-018-2177-8
DOI10.1007/s10955-018-2177-8
Short TitleJ Stat Phys
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU