Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Nano-scale mechanics of colloidal C-S-H gels

TitleNano-scale mechanics of colloidal C-S-H gels
Publication TypeJournal Article
Year of Publication2014
AuthorsMasoero E, Del Gado E, Pellenq RJean-Marc, Yip S, Ulm F-J
JournalSoft Matter
Volume10
Issue3
Pagination491-499
Date PublishedJan-21-2014
Type of ArticleArticle
ISSN1744-683X
Abstract

Gels of calcium-silicate-hydrates (C-S-H) are the glue that is largely responsible for the mechanical properties of cement. Despite their practical relevance, their nano-scale structure and mechanics are still mainly unexplored, because of the difficulties in characterizing them in a complex material like cement. We propose a colloidal model to investigate the gel mechanics emerging in the critical range of length-scales from several tens to hundreds of nanometers. We show that the size polydispersity of the hydrates and size-dependent effective interactions can explain the mechanical heterogeneities detected in nano-indentation experiments. We also show how these features control the arising of irreversible structural rearrangements under deformation, which are good candidates as nano-scale mechanisms underlying mechanical aging and slow structural relaxation in the gels.

Graphical abstract: Nano-scale mechanics of colloidal C–S–H gels
DOI10.1039/c3sm51815a
Full Text
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU