Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Scaling behaviour of cohesive granular flows

TitleScaling behaviour of cohesive granular flows
Publication TypeJournal Article
Year of Publication2016
AuthorsBerger N, Azéma E, Douce J-F, Radjaï F
JournalEPL (Europhysics Letters)
Volume112
Issue6
PaginationArticle Number: 64004
Date PublishedJan-12-2016
ISSN0295-5075
Abstract

The shear strength of dense granular flows is generally described by an effective friction coefficient, ratio of shear to normal stress, as a function of the inertial number I. However, this ratio depends on the normal stress when the particles interact via both friction and adhesion forces, and in this sense it does not properly represent a Coulomb-like friction. For the same reason, it is not a unique function of I. We used extensive contact dynamics simulations to isolate the cohesive strength from the purely frictional strength in dense inertial flows for a broad range of shear rates and adhesion forces between particles. Remarkably, while the frictional part of the strength increases with I, the cohesive strength is found to be a decreasing function of I. We show that a single dimensionless parameter, combining interparticle adhesion with I, controls not only the cohesive strength but also the packing fraction and granular texture in inertial flows.

DOI10.1209/0295-5075/112/64004
Short TitleEPL
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU