Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Shear flow of dense granular suspensions by computer simulations

TitleShear flow of dense granular suspensions by computer simulations
Publication TypeConference Proceedings
Year of Publication2014
AuthorsAmarsid L., Mutabaruka P, Delenne J-Y
EditorSoga K, Kumar K, Biscontin G
SponsorInt Soc Soil Mech & Geotechn Engn, Geo Mech Micro Macro Tech Comm 105
Conference Name3rd International Symposium on Geomechanics from Micro to Macro
VolumeGeomechanics from Micro to Macro
Number of VolumesVols I and II
Pagination467-472
Date PublishedApr-2014
PublisherCRC Press
Conference LocationSEP 01-03-2014 Univ Cambridge, Cambridge, ENGLAND
Abstract

We analyze the shear flow of dense granular materials composed of circular particles immersed in a viscous fluid by means of Molecular Dynamics simulations interfaced with the Lattice Boltzmann Method. A homogeneous flow of the suspension is obtained through periodic boundary conditions and by directly applying a confining pressure on the granular phase and shearing the fluid phase. The stead-state rheology can be described in terms of effective friction coefficient and packing fraction of the suspension as a function of the ratio of viscous shear stress to confining pressure (frictional description), on one hand, and in terms of normal and shear viscosities of the suspension as a function of the packing fraction (viscous description), on the other hand. We show that the simulation data are consistent with both descriptions and in close agreement with the corresponding scaling laws observed in recent experiments.

URLhttp://prodinra.inra.fr/record/369542
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU