Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Shear strength and microstructure of 3D assemblies of platy particles

TitleShear strength and microstructure of 3D assemblies of platy particles
Publication TypeConference Proceedings
Year of Publication2013
AuthorsBoton M, Azéma E, Estrada N, Radjaï F, Lizcano A
EditorYu A, Dong K, Yang R
SponsorAssoc Study Micromechan Granular Media(AEMMG), Univ New S Wales(UNSW) Lab Simulat & Modelling Particulate Syst(SIMPAS), Curtin Univ(CU) Dept Chemical Engn, Univ Twente(UT) Multi Scale Mech Grp(CTW & MESA+), JMBC Res Sch Fluid Mechan, Elsevier, Univ New S Wales(UNSW) Sch Mat Sci & Engn
Conference Name7th International Conference on Micromechanics of Granular Media (Powders and Grains)
VolumeBook Series: AIP Conference Proceedings POWDERS AND GRAINS 2013
Number of Volumes1542
Pagination519-522
Date PublishedJul-09-2013
Conference LocationJUL 08-12 2013 Sydney, AUSTRALIA
KeywordsClays, DEM, Microstructure, Shear strength
Abstract

As a first step towards particle-scale modeling of clayey soils, we investigate the mechanical behavior and microstructure of assemblies of three-dimensional rectangular platy particles by means of the discrete element method. Several samples composed of particles of different levels of platyness (ratio of width to thickness) were numerically prepared and sheared to large deformations. We analyze the shear strength, packing fraction, connectivity, contact and force anisotropies, and mobilization of friction forces as functions of platyness.We find that both the mechanical behavior and microstructure are strongly dependent on the degree of platyness. This happens, in particular, because of the alignment of particle faces along a particular direction. Additionally, as observed for other granular materials with complex shapes, the packing fraction passes by a peak value before decreasing for larger values of platyness.

URLhttps://hal.archives-ouvertes.fr/hal-00842787
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU