Skip to main content

MultiScale Material Science for Energy and Environment

Logo MultiScale Material Science

MultiScale Materials Science for Energy and Environment

  • Home
  • The Lab
  • People
  • Publications
  • News / Events
  • GDRI
  • Home
  • The Lab
    • The Lab
    • Research
    • Education
    • Amazing People
    • Contact
  • People
  • Publications
  • News / Events
    • News
    • Seminars
    • Conferences
    • Winter School
  • GDRI
    • Presentation

Viscoinertial regime of immersed granular flows

TitleViscoinertial regime of immersed granular flows
Publication TypeJournal Article
Year of Publication2017
AuthorsAmarsid L., Delenne J-Y, Mutabaruka P, Monerie Y, Perales F., Radjaï F
JournalPhysical Review E
Volume96
Issue1
PaginationArticle Number: 012901
Date PublishedOct-10-2017
ISSN2470-0045
Abstract

By means of extensive coupled molecular dynamics–lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.

Figure

Figure

Figure

Figure

Figure

Figure

Figure

DOI10.1103/PhysRevE.96.012901
Short TitlePhys. Rev. E
  • DOI
  • BibTex
  • RIS

Login using Touchstone
  • MIT
  • CNRS
  • INVESTISSEMENT D'AVENIR
  • CINAM
  • MITEI
  • AMU